





irish bioenergy association

Evaluation of The Benefits of CO2 Abatement Delivered from Anaerobic Digestion in Ireland

### Contents

| 1. | Exec        | utive Summary1                                             |  |
|----|-------------|------------------------------------------------------------|--|
| 2. | Scop        | pe2                                                        |  |
| 3. | Intro       | oduction2                                                  |  |
| 4. | Spec        | ific Carbon Dioxide Savings In Ad Industry3                |  |
| 5. | Econ        | nomic Values Delivered By Ad Industry, Ireland 20304       |  |
|    | 5.1         | Identification of Additional Values Delivered by Industry4 |  |
|    | 5.2         | Carbon Dioxide Price4                                      |  |
|    | 5.3         | Economic Values Related to Anaerobic Digestion             |  |
|    | 5.4         | Economic Values Specific to Power Production               |  |
| 6. | Conclusions |                                                            |  |
| 7. | References9 |                                                            |  |

### **About the Author**



Dr. Jan Štambaský is president of the European Biogas Association, executive board member of the Czech Biogas Association, and managing director of the NovaEnergo Company. He received his PhD in chemistry from the University of Glasgow in 2008. He then created his own company, focused at high-end biogas process optimization and consultancy services. Dr. Štambaský has delivered over 150 contributions and key-note speeches in the field of biogas production and utilization. He has co-authored and worked in a number of European and national biogas and biomethane research projects.

# NovaEnergo Your new energy

# **Identification sheet**

| Document name:   | Evaluation of The Benefits of Co <sub>2</sub> Abatement Delivered by Anaerobic<br>Digestion in Ireland                                                           |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clients:         | <b>Cré- Composting &amp; Anaerobic Digestion Association of Ireland,</b><br>Po Box 135, Enfield, Co. Meath, Ireland                                              |
|                  | <b>The Irish Bioenergy Association, (IrBEA)</b><br>Unit 104, DCU Alpha,<br>Old Finglas Road,<br>Glasnevin, Dublin 11, D11KXN4, Ireland                           |
| Contractor:      | NovaEnergo s.r.o.<br>nám. 14. října 1307/2<br>150 00 Praha 5<br>IČ: 28501152<br>Tel.: 777 208 020<br>Fax: 226 013 088<br>info@novaenergo.cz<br>www.novaenergo.cz |
| Processed by:    | Dr. Jan Stambasky                                                                                                                                                |
| Approved by:     | Dr. Jan Stambasky                                                                                                                                                |
| In Prague on:    | Version 1: 12th September 2016                                                                                                                                   |
|                  | Version 2: 13th September 2016                                                                                                                                   |
|                  | Version 3: 21st September 2016 (updated figures on biowaste)                                                                                                     |
| Number of pages: | 8                                                                                                                                                                |

This report nor its individual parts cannot be reproduced or distributed without permission of NovaEnergo Ltd. Based on the agreement only complete text including all text and graphic attachments can be reproduced. Designed for the needs of the Client.

Bankovní spojení: KB Praha 43-3743300227/0100 I IČ: 28501152 I DIČ: CZ28501152 Společnost je zápsána v obchodním rejstříku, vedeném Městským soudem v Praze oddíl C, vložka 146201.

### 1. Executive Summary

The report quantifies the economic benefits of carbon dioxide abatement by anaerobic digestion of different waste streams in Ireland.

The anaerobic digestion (AD) industry demonstrates unique carbon dioxide avoidance compared to other renewable energy technologies. There are four known, significant  $CO_2^{eq}$  reduction pathways.<sup>1</sup> Only **fossil energy replacement** is generally known and acknowledged by general environmental policies. Recent scientific research has revealed, however, that further contributions from **slurries, manures and biowaste treatment**, **biofertiliser production**, and **soil carbon sequestration** play a major role in the total  $CO_2^{eq}$  reduction delivered by the AD industry.

All these  $CO_2^{eq}$  mitigation pathways were analysed and quantified in terms of economic values. Specific and total economic values were calculated for all  $CO_2^{eq}$  reduction pathways, together with specific benefits which relate only to electricity production.

Cumulative specific economic values, combining synergic effects of AD process and electricity production, are significantly high in all evaluated scenarios of expected  $CO_2$  price. Particularly values related to slurries and manure treatment in the high internal  $CO_2$  price scenario are approaching the lower end of Premiums/Feed-in-tariffs in Europe.

| specific economic values of AD & electricity-production-specific contributions to CO <sub>2</sub> 'savings |                   |                          |                  |  |
|------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|------------------|--|
| Scenario                                                                                                   | Feedstock         | Electricity<br>[EUR/MWh] | CHP<br>[EUR/MWh] |  |
|                                                                                                            | Slurries, manures | 162.89                   | 168.02           |  |
| Low scenario                                                                                               | OFMSW             | 164.93                   | 170.06           |  |
|                                                                                                            | Grass             | 87.49                    | 92.62            |  |
|                                                                                                            | Slurries, manures | 202.71                   | 210.03           |  |
| Medium scenario                                                                                            | OFMSW             | 205.62                   | 212.94           |  |
|                                                                                                            | Grass             | 94.99                    | 102.31           |  |
|                                                                                                            | Slurries, manures | 235.88                   | 245.03           |  |
| High scenario                                                                                              | OFMSW             | 239.52                   | 248.67           |  |
|                                                                                                            | Grass             | 101.24                   | 110.39           |  |

Specific economic values of AD & electricity-production-specific contributions to CO,<sup>eq</sup> savings

The table above shows the value of  $CO_2$  savings per tonne of feedstock processed by AD plus the energy production and job input benefits, expressed in EUR/MWh.

# It is important to highlight that the calculated specific economic values are significantly offsetting any given Feed-in-Tariff and correspondingly reducing the social costs.

In terms of absolute figures, all evaluated scenarios of power production and combined heat and power production exhibit **cumulative annual offsets ranging from 1.1 billion to 1.5 billion Euro by 2030**, depending on the corresponding CO<sub>2</sub><sup>eq</sup> price.

In addition to quantifiable benefits outlined in this report, there are additional benefits which cannot be easily quantified, nor economically assessed. Among these benefits is flexible use of the natural gas grid for heating, cooling and transport, rural development and sustainable agriculture, improved air quality related to alternative waste treatment pathways.

# 2. Scope

Nova Energo was hired by Cré and IrBEA to assess the carbon savings which anaerobic digestion could provide in Ireland, if the correct support structures were in place.

## 3. Introduction

Various options of AD industry potential development in Ireland have been recently assessed.<sup>2</sup> Three different feedstock streams that have the ideal characteristics for AD processing, have been identified in Ireland. They are:

- Organic fraction of source separated municipal solid waste (OFMSW) (brown bin)
- Manures and slurries from animals
- Grass from permanent grassland

Biogas energy can be utilised in various directions, much depending on local conditions, technical constraints, synergic opportunities, technical and economical feasibility. In this evaluation, we focus on biogas utilization in **a)** Power production; **b)** Combined Heat & Power production (CHP); **c)** Transportation sector (as compressed biomethane). Specific energy yields of selected feedstock streams are summarised in the table (Table 1).

| Table 1: Specific energy yields of selected feedstock streams <sup>a,3</sup> |                                         |                                             |                                     |                                      |  |
|------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|-------------------------------------|--------------------------------------|--|
| Feedstock                                                                    | Electricity<br>[MWh/ t <sub>орм</sub> ] | CHP-electricity<br>[MWh/ t <sub>оDM</sub> ] | CHP-heat<br>[GJ/ t <sub>оом</sub> ] | Transport<br>[GJ/ t <sub>оом</sub> ] |  |
| OFMSW                                                                        | 1.87                                    | 1.87                                        | 6.74                                | 16.84                                |  |
| Slurries, manures                                                            | 1.08                                    | 1.08                                        | 3.90                                | 9.76                                 |  |
| Grass                                                                        | 1.33                                    | 1.33                                        | 4.77                                | 11.92                                |  |

<sup>a)</sup> ODM: Organic Dry Matter; equals to (dry matter minus ash)

An economic assessment of the contributions in Table 1 is important for the appropriate decision makers responsible for developing AD policy in Ireland.

## 4. Specific Carbon Dioxide Savings in AD Industry

The AD industry provides a complex range of carbon dioxide savings, which should be thoroughly quantified in any attempt to compare the AD industry with other sources of renewable energy. Some further mitigation pathways are still the subject of on-going research.

The specific relative contributions of feedstock streams to CO<sub>2</sub> savings in the energy sector are summarised in the following table (Table 2).

| Table 2: Specific relative CO <sub>2</sub> savings of feedstock in energy utilization pathways |                                                                                    |                                                               |                                                        |                                                                                  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|
| Feedstock                                                                                      | Electricity <sup>4</sup><br>[kg CO <sub>2</sub> <sup>eq</sup> / t <sub>ODM</sub> ] | CHP-electricity<br>[kg CO <sub>2</sub> eq/ t <sub>ODM</sub> ] | CHP-heat⁵<br>[kg CO <sub>2</sub> ª/ t <sub>одм</sub> ] | Transport <sup>6</sup><br>[kg CO <sub>2</sub> <sup>eq</sup> / t <sub>ODM</sub> ] |
| OFMSW                                                                                          | 855                                                                                | 855                                                           | 384                                                    | 1,233                                                                            |
| Slurries, manures                                                                              | 495                                                                                | 495                                                           | 222                                                    | 714                                                                              |
| Grass                                                                                          | 605                                                                                | 605                                                           | 272                                                    | 873                                                                              |

Additional GHG emission savings relevant for AD treatment technology, together with particular increments, can easily be expressed in CO<sub>2</sub> mitigation potential per unit of feedstock mass (organic dry matter), and are summarised in the following table (Table 3).

| Table 3: Specific contributions to CO <sub>2</sub> <sup>eq</sup> savings of identified AD feedstock streams in Ireland |                                                                     |                                                                          |                                                             |                                                                 |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| Feedstock                                                                                                              | Treatment<br>[kg CO <sub>2</sub> <sup>eq</sup> / t <sub>оом</sub> ] | N-Fertilisers <sup>7</sup><br>[kg CO <sub>2</sub> eq/ t <sub>ODM</sub> ] | Sequestration<br>[kg CO <sub>2</sub> eq/ t <sub>ODM</sub> ] | Total<br>[kg CO <sub>2</sub> <sup>eq</sup> / t <sub>oDM</sub> ] |
| OFMSW                                                                                                                  | 5,654                                                               | 99                                                                       | 498                                                         | 6,252                                                           |
| Slurries, manures                                                                                                      | 3,275                                                               | 64                                                                       | 194                                                         | 3,533                                                           |
| Grass                                                                                                                  | 0                                                                   | 77                                                                       | 244                                                         | 322                                                             |

#### Total CO<sub>2</sub> mitigation potential of selected feedstock contains both, specific relative savings in energy utilization pathways, and the specific relative savings related to special features of AD technology (Table 4).

| Feedstock         | Electricity<br>[kg CO <sub>2</sub> eq/ t <sub>ODM</sub> ] | CHP<br>[kg CO <sub>2</sub> <sup>eq</sup> / t <sub>oDM</sub> ] | Transport<br>[kg CO <sub>2</sub> <sup>eq</sup> / t <sub>ODM</sub> ] |
|-------------------|-----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|
| OFMSW             | 7,107                                                     | 7,491                                                         | 7,485                                                               |
| Slurries, manures | 4,028                                                     | 4,251                                                         | 4,247                                                               |
| Grass             | 927                                                       | 1,198                                                         | 1,194                                                               |

# 5. Economic Values Delivered by AD Industry, Ireland 2030

### 5.1 Identification of Additional Values Delivered by Industry

The AD industry is well-established across the EU, and uses mature technologies which contribute to significant reduction of greenhouse gas (GHG) emissions in various sectors of the EU. The generated products (biogas, biomethane and bio-fertiliser<sup>8</sup>) substitute fossil energy, circulate nutrients,<sup>9</sup> mitigate methane emissions in agriculture and help manage wastes.

In this report, the following carbon reduction values delivered by the AD industry have been quantified and evaluated:

- Energy commodity price (electricity only)
- Alternative feedstock treatment
- Replacement of nitrogen fertilisers
- Carbon sequestration related to digestate application
- Jobs<sup>10</sup>
- Dispatchability of electricity production<sup>11</sup>

However, AD is a complex GHG mitigation technology, with further benefits which cannot be easily quantified, nor economically assessed. Among these benefits is flexible use of the natural gas grid for heating, cooling and transport, rural development and sustainable agriculture, improved air quality related to alternative waste treatment pathways. This range of further benefits is not complete since research of this subject is still on-going.

### 5.2 Carbon Dioxide Price

Price of  $CO_2$  is a crucial parameter in evaluating possible economic benefits of the AD industry. However, there is no single method or price of  $CO_2$  to be used. An internal  $CO_2$  price<sup>12</sup> is a mechanism recently adopted by an increasing number of large and multinational companies.<sup>13</sup> There are several reasons to implement the policy of an internal  $CO_2$  price, with the following key-benefits:

- To avoid intermediary/transaction costs associated with trading permits in national schemes in favour of factoring in these prices internally
- To justify investments that may have smaller margins without a carbon price
- To anticipate government legislation on carbon pricing
- To comply with existing government legislation
- To manage risk for future investments
- To monetise and record social cost

In this evaluation, we anticipated three different scenarios. These scenarios are based upon two different realistic internal CO<sub>2</sub> prices, set-up and implemented by Royal Dutch Shell<sup>14</sup> and Statoil,<sup>15</sup> companies listed among the Fortune Global 500.<sup>16</sup> The third value was determined as a minimal value, anticipated to be more likely in determining carbon prices widely across all sectors.

| Table 5: Internal CO <sub>2</sub> price used in this evaluation report |                   |                                                              |  |  |
|------------------------------------------------------------------------|-------------------|--------------------------------------------------------------|--|--|
| Scenario                                                               | Base              | Price <sup>a</sup><br>[EUR/t CO <sub>2</sub> <sup>eq</sup> ] |  |  |
| Low scenario                                                           | Calculation       | 25                                                           |  |  |
| Medium scenario                                                        | Royal Dutch Shell | 35.71 (\$ 40)                                                |  |  |
| High scenario                                                          | Statoil           | 44.64 (\$ 50)                                                |  |  |
|                                                                        |                   |                                                              |  |  |

<sup>a)</sup> 1 EUR = 1.12 USD<sup>17</sup>

### 5.3 Economic Values Related to Anaerobic Digestion

Economic values related to the anaerobic digestion process contain a set of calculations related to CO<sub>2</sub> mitigation delivered by alternative feedstock treatment, replacing industrial fertilisers, and carbon sequestration in agricultural soil. Corresponding specific values (per 1 MWh) are summarised for each particular energy use (Table 6).

| Table 6: Specific economic values of AD-specific contributions to CO <sub>2</sub> <sup>eq</sup> savings |                   |                          |                  |                        |
|---------------------------------------------------------------------------------------------------------|-------------------|--------------------------|------------------|------------------------|
| Scenario                                                                                                | Feedstock         | Electricity<br>[EUR/MWh] | CHP<br>[EUR/MWh] | Transport<br>[EUR/MWh] |
|                                                                                                         | Slurries, manures | 92.89                    | 98.02            | 39.18                  |
| Low scenario                                                                                            | OFMSW             | 94.93                    | 100.06           | 39.99                  |
|                                                                                                         | Grass             | 17.49                    | 22.62            | 9.02                   |
|                                                                                                         | Slurries, manures | 132.71                   | 140.03           | 55.97                  |
| Medium scenario                                                                                         | OFMSW             | 135.62                   | 142.94           | 57.13                  |
|                                                                                                         | Grass             | 24.99                    | 32.31            | 12.88                  |
|                                                                                                         | Slurries, manures | 165.88                   | 175.03           | 69.96                  |
| High scenario                                                                                           | OFMSW             | 169.52                   | 178.67           | 71.41                  |
|                                                                                                         | Grass             | 31.24                    | 40.39            | 16.10                  |

The total values of such a contribution were determined for the 2030 scenario in Ireland (Table 7).

| Scenario        | Feedstock         | Electricity<br>[million EUR] | CHP<br>[million EUR] | Transport<br>[million EUR] |
|-----------------|-------------------|------------------------------|----------------------|----------------------------|
|                 | Slurries, manures | 357.6                        | 377.3                | 377.0                      |
| 1               | OFMSW             | 24.5                         | 25.8                 | 25.8                       |
| Low scenario    | Grass             | 82.3                         | 106.4                | 106.0                      |
|                 | TOTAL             | 464.3                        | 509.5                | 508.8                      |
|                 | Slurries, manures | 510.8                        | 539.0                | 538.6                      |
|                 | OFMSW             | 35.0                         | 36.9                 | 36.8                       |
| Medium scenario | Grass             | 117.5                        | 151.9                | 151.4                      |
|                 | TOTAL             | 663.3                        | 727.8                | 726.8                      |
|                 | Slurries, manures | 638.5                        | 673.7                | 673.2                      |
|                 | OFMSW             | 43.7                         | 46.1                 | 46.1                       |
| High scenario   | Grass             | 146.9                        | 189.9                | 189.2                      |
|                 | TOTAL             | 829.1                        | 909.8                | 908.5                      |

Table 7: Total economic values of AD-specific contributions to CO<sub>2</sub><sup>eq</sup> savings

Both the specific and the total economic values of AD-specific contributions to  $CO_2^{eq}$  savings have to be considered in the corresponding context of the Ireland 2030 Scenario. Whereas slurries and grass utilisation is fully comparable in terms of quantity, the amount of available OFMSW is smaller by one order of magnitude.

### 5.4 Economic Values Specific to Power Production

Economic values specific to power production were included in this study. However, only three values were successfully determined (Table 8).

| Table 8: Quantified economic benefits specific to electrical production |                    |  |
|-------------------------------------------------------------------------|--------------------|--|
| ltem                                                                    | Price<br>[EUR/MWh] |  |
| Energy commodity                                                        | 30                 |  |
| Jobs                                                                    | 20                 |  |
| Dispatchability                                                         | 20                 |  |

Specific economic values of AD-specific contributions to  $CO_2^{eq}$  savings were combined with economic benefits specific to power production (Table 9). It is important to highlight the fact, that the specific economic **benefits related to electricity production are lower** compare to the specific economic values of AD-specific contributions to  $CO_2^{eq}$  savings in all investigated scenarios.

| savings         |                   |                          |                  |
|-----------------|-------------------|--------------------------|------------------|
| Scenario        | Feedstock         | Electricity<br>[EUR/MWh] | CHP<br>[EUR/MWh] |
| Low scenario    | Slurries, manures | 162.89                   | 168.02           |
|                 | OFMSW             | 164.93                   | 170.06           |
|                 | Grass             | 87.49                    | 92.62            |
| Medium scenario | Slurries, manures | 202.71                   | 210.03           |
|                 | OFMSW             | 205.62                   | 212.94           |
|                 | Grass             | 94.99                    | 102.31           |
| High scenario   | Slurries, manures | 235.88                   | 245.03           |
|                 | OFMSW             | 239.52                   | 248.67           |
|                 | Grass             | 101.24                   | 110.39           |

Table 9: Specific economic values of AD & electricity-production-specific contributions to  $CO_2^{eq}$  savings

Table 9 shows the value of  $CO_2$  per tonne of feedstock plus the energy production and job input; expressed in EUR/MWh. Table 9 is a sum of Tables 6 and 8.

Total economic value of both, the AD-specific and electricity-production-specific contributions were calculated for the 2030 Ireland scenario (Table 10).

| Table 10: Total economic values of AD & electricity | y-production-specific contributions to CO <sup>,eq</sup> savings |
|-----------------------------------------------------|------------------------------------------------------------------|
|                                                     | production specific contributions to co <sub>2</sub> surfligs    |

| Scenario        | Feedstock         | Electricity<br>[million EUR] | CHP<br>[million EUR] |
|-----------------|-------------------|------------------------------|----------------------|
| Low scenario    | Slurries, manures | 627.0                        | 646.7                |
|                 | OFMSW             | 42.6                         | 43.9                 |
|                 | Grass             | 411.4                        | 435.5                |
|                 | TOTAL             | 1081.0                       | 1126.1               |
| Medium scenario | Slurries, manures | 780.3                        | 808.4                |
|                 | OFMSW             | 53.0                         | 54.9                 |
|                 | Grass             | 446.7                        | 481.1                |
|                 | TOTAL             | 1280.0                       | 1344.5               |
| High scenario   | Slurries, manures | 908.0                        | 943.2                |
|                 | OFMSW             | 61.8                         | 64.2                 |
|                 | Grass             | 476.0                        | 519.1                |
|                 | TOTAL             | 1445.8                       | 1526.4               |

### 6. Conclusions

The AD industry demonstrates unique carbon dioxide avoidance compared to other renewable energy technologies. There are four known, significant CO<sub>2</sub><sup>eq</sup> reduction pathways.<sup>18</sup> Only **fossil energy replacement** is generally known and acknowledged by general environmental policies. Recent scientific research has revealed, however, that further contributions from **slurries, manures and biowaste treatment**, **biofertiliser production**, and **soil carbon sequestration** play a major role in the total CO<sub>2</sub><sup>eq</sup> reduction delivered by the AD industry.

All these  $CO_2^{eq}$  mitigation pathways were analysed and quantified in terms of economic values. Specific and total economic values were calculated for all  $CO_2^{eq}$  reduction pathways, together with specific benefits which relate only to electricity production.

Cumulative specific economic values, combining synergic effects of AD process and electricity production, are significantly high in all evaluated scenarios of expected  $CO_2$  price. Particularly values related to slurries and manure treatment in the high internal  $CO_2$  price scenario are approaching the lower end of Premiums/Feed-in-tariffs in Europe.

It is important to highlight that the calculated specific economic values are significantly offsetting any given Feed-in-Tariff and correspondingly reducing the social costs.

In terms of absolute figures, all evaluated scenarios of power production and combined heat and power production exhibit **cumulative offsets ranging from 1.1 billion to 1.5 billion Euro**, depending on the corresponding CO<sub>2</sub><sup>eq</sup> price.

### 7. References

- 1 Note: further scientific research is heavily focusing at the soil carbon sequestration pathways, and the nutrient recovery beyond the nitrogen loop. More  $CO_2^{eq}$  reduction pathways may be acknowledged in the future.
- 2 Biogas Industry for Ireland, NovaEnergo s.r.o., 5<sup>th</sup> July 2016
- 3 Standardised ODM values and energy (biogas) yields of feedstocks based on the following research database; http://daten.ktbl.de/biogas/showSubstrate.do?zustandReq=3#anwendung
- Sustainable Energy Authority of Ireland (SEAI); 457 kg CO2<sup>eq</sup> was emitted per 1 MWh of electricity in Ireland (2014); Carbon Content of Irish Electricity Generation Hits Record Low in 2014 - See more at: http://www.seai.ie/News\_Events/Press\_Releases/2015/Carbon-Content-of-Irish-Electricity-Generation-Hits-Record-Low-in-2014.html
- 5 Sustainable Energy Authority of Ireland (SEAI); 205 kg CO<sub>2</sub><sup>eq</sup> was emitted per 1 MWh of heat (natural gas)
- 6 US Energy Information Administration: 73.2 kg CO<sub>2</sub><sup>eq</sup> is emitted per 1 GJ of diesel used as a car fuel
- 7 6 kg CO<sub>2</sub><sup>eq</sup> per 1 kg of mineral Nitrogen replaced; FP-7 Improved Nutrient and Energy Management through Anaerobic Digestion ; <u>www.inemad.eu</u>
- 8 Note: only nitrogen fertilizers contribution is calculated. Further emissions savings are legitimately expected. Particular conversion factors are subject to further scientific research.
- 9 In the case of animal manure, only ½ of nitrogen savings were accounted. This corresponds to an increased nitrogen plant availability caused by anaerobic digestion treatment.
- 10 Based on 6 jobs per 1 MWh (electrical equivalent) and value of Job Seekers allowance and taxes/ employer PRSI paid on a EUR 34,000 per annum salary
- 11 Brand, B.; Stambouli, A. B.; Zejli, D. Energy Policy 2012, 47, 321.
- 12 Internal Carbon Dioxide Price, COP21 2015, Article 6 on *Creating mechanisms and markets to reduce carbon emissions*
- 13 437 international companies adopted internal CO<sub>2</sub> price by 2015; www.triplepundit.com
- 14 Hone, D.; Climate Change Advisor for Shell; http://blogs.shell.com/climatechange/category/carbontax/
- 15 STATOIL; http://www.statoil.com/en/NewsAndMedia/News/2014/Pages/23Sep\_UN\_Climate\_ summit.aspx
- 16 FORTUNE Global 500 (2016), Royal Dutch Shell (4<sup>th</sup> position), Statoil (145<sup>th</sup> position); http://beta. fortune.com/global500/list
- 17 European Central Bank; https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graphusd.en.html
- 18 Note: further scientific research is heavily focusing at the soil carbon sequestration pathways, and the nutrient recovery beyond the nitrogen loop. More CO<sub>2</sub><sup>eq</sup> reduction pathways may be acknowledged in the future.